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ABSTRACT

Simultaneous Range Differences (SRD’s) to Lageos are obtained by
dividing the observing stations into pairs with quasi-simultaneous
observations. For each of those pairs the station with the least number
of observations is identified, and at its observing epochs interpolated
ranges for the alternate station are generated. The SRD observables
are obtained by subtracting the actually observed laser ranges of the
station having the least number of observations from the interpolated
ranges of the alternate station. On the basis of these observables
semidynamic single baseline solutions have been performed. The aim of
these solutions is to further develop and implement the SRD method in
the real data environment, to assess its accuracy, its advantages and
disadvantages as related to the range dynamic mode methods, when the
baselines are the only parameters of interest.

Baselines, using simultaneous laser range observations to Lageos,
have also been estimated through the purely geometric method. These
baselines formed the standards of comparison in the accuracy
assessment of the SRD method when compared to that of the range
dynamic mode methods. On the basis of this comparison it was
concluded that for baselines of regional extent (i.e., up to 3700 km) the
SRD method is very effective, efficient and at least as accurate as the
range dynamic mode methods, and that on the basis of a simple orbital
modeling and a limited orbit adjustment.

The SRD method is insensitive to the inconsistencies affecting the
terrestrial reference frame and simultaneous adjustment of the Earth
Rotation Parameters (ERP’s) is not necessary. Therefore, this method
offers an inexpensive alternative for projects designed to study regional

plate tectonic motions.
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Chapter 1

INTRODUCTION

1.1 BASELINE ESTIMATION IN THE DYNAMIC AND SEMIDYNAMIC
ENVIRONMENT

In the dynamic environment accurate baseline estimation requires a
highly sophisticated orbital modeling and a baseline-pass geometry
leading to near cancellation of the accumulated along-track and
cross~track orbital errors caused by the erroneous constraints imposed
on a large number of estimable quantities (Rao, 1973), the recovery of
which is not possible due to their reduced data sensitivity. In this
environment proper implementation of the Terrestrial Reference Frame
(TRF) requires simultaneous recovery of the Earth Rotation Parameters
(ERP) or utilization of a consistent set of ERPs obtained through a
separate step.

Although fulfillment of these requirements makes it possible to
effectively recover baselines of global and regional extent, it results in
low temporal resolution of baseline recovery.

In the semidynamic environment (Section 2.2), and on the basis of
simultaneous observations, only regional baselines can be recovered with
an accuracy compatible to that of the observed laser ranges. The
maximum regional baseline length effectively recovered in this
environment depends on whether the simultaneous observations collected
by the baseline end stations are enough to result in a steady state
response (Section 4.2.1). This, however, is a function of the satellite
altitude, and for the Lageos satellite the effective regional extent may
include baselines of up to 3703 km (Section 4.4.2).

In the semidynamic environment a relatively simplified orbital model
is required and only the position and the orientation of each of the arcs

involved is adjusted to "best" fit the available observations (Section



2.2.6). Adjustment for the ERP parameters is not necessary since
proper implementation of the TRF frame is warranted by the use of only
simultaneous observations. The relaxing data requirements and the
limited orbit adjustment make it possible to increase the resolution of
baseline recovery without any loss on the achieved accuracies, and at
the same time to substantially decrease the required computations,
thereby making it possible to effectively implement the semidynamic
methods with limited computer facilities as, for instance, in the personal
computer (PC) environment.

The sophistication of the orbital modeling in the semidynamic
environment can be further simplified by appropriately transforming the
observed laser ranges to bring them "closer" to the estimable quantities
being recovered (i.e., baselines).  The term "closer" indicates that on
the basis of the same orbital model the errors affecting the computed
value of the transformed observations, referred to from now on as
"observables," are smaller than those affecting the computed value of
the observations themselves. By bringing the observations closer to the
estimated baselines, the sophistication of the orbital modeling could be
further reduced if the performed transformation cancels out the errors
caused by the model simplifications.

Transformation of the laser range observations to Simultaneous
Range Difference (SRD) observables brings them closer to the estimated
baselines (Pavlis, 1982). The potential of using SRD observables to
estimate baselines was studied with simulated data by Pavlis (1982). The
results of this study were very promising not only with respect to their

accuracy but also with respect to their simplicity.

1.2 SCOPE OF THIS INVESTIGATION

For the reasons mentioned in the previous section, it was considered
appropriate and worthwhile to pursue the present investigation, the aim
of which is to further develop and implement the SRD method (Section
2.2.1) in the real data environment, to assess its accuracy, its
advantages and disadvantages as related to range dynamic mode

methods, when the baselines are the only parameters of interest.



Since during the MERIT Main Campaign many stations collected
simultaneous observations (Section 3.4), it was decided to proceed not
only with the development of the SRD method but also with baseline
estimation through the geometric method (Section 4.3). These baselines
formed the standards of comparison in the accuracy assessment of both
the SRD and the range dynamic mode methods (Section 4.5).

In pursuing this study, the geometry does not take part in the
physical events, as happens in general relativity, but rather it is used
in its deductive form either purely (i.e., geometric methods) or in
combination with an inductive form (i.e., dynamic and semidynamic
methods), both of which were employed to formulate the spatial-temporal
relationships of the observing stations and the observed satellite
positions.

In a pure deductive mode the geometric method is entirely based on
Euclidean geometry, without any reference to the inductive inference
that the satellite moves along the path chosen by its physical
environment, The implied Euclidean geometry is revealed, in the
arithmetic framework, on the basis of Cartesian coordinates (Section
2.1.1). There exist, however, configurations in which some of the
vertices of the resulting figures are free to move along a locus of
points, thereby forming configurations that are not unique and are
referred to as "critical configurations" (Section 2.1.3).

In the inductive mode, the differential form of a satellite’s motion,
modeled on the basis of Newton’s inductive laws, is expressed through
its equations of motion (Section 2.2.5). These equations are integrated,
on the basis of the deductive mathematical framework, to reveal the
geometric path of the satellite (i.e., orbit), chosen by the satellite’s
physical environment (Section 2.2.3). Having the geometric path of the
satellite, the observing stations are connected with this path through
the Euclidean distance formulated in terms of Cartesian coordinates.
Since the simplest geometry of the satellite orbit reveals itself in an
inertial reference frame, the satellite’s equations of motion are expressed
with respect to such a frame (Section 2.2.4). However, the estimated

Cartesian coordinates of the observing stations are referenced with



respect to an earth-fixed frame (Section 2.2.2).

The deductive and/or inductive formulation described above contains
a large number of slow varying quantities which can be considered
constant for the time span of the observations and a subset of which
constitutes a set of quantities that are estimable only if the necessary
units, constants and/or constraints have been properly adopted for
their unique determination (Rao, 1973).

There are three types of estimable quantities that can be
differentiated from their relation to the physical environment, or the
observing environment, or the links of these two environments.

In satellite geodesy the interstation distances (i.e., baselines) are
estimable quantities related to the observing environment. The estimable
quantities of the physical environment are those related to its cause
(i.e., A,m and B,, potential coefficients) and those to its effect (i.e.,
geometric and dynamic characteristics of the orbit). The estimable
quantities molded in the link of the physical and the observing
environments are those resulting from the latter as relates to the cause
and effect duality of the former (i.e., station geocentric distances,
latitudes, and longitude differences).

The baselines are computed from the earth-fixed station coordinates
which are recovered through an inversion process, such as
least-squares adjustment, on the basis of both the geometric and the
SRD methods (Sections 2.1.2 and 2.2.6). The input to this inversion
process are the Simultaneous Ranges (SR) and SRD observables. These
observables were generated through an interpolation of the observed
laser ranges because it is quite unlikely, if not impossible, to record
simultaneous observations to a passive satellite (Section 3.6). Because of
the peculiarities of the SLR system (Section 3.1 ), it is very likely that
the recorded laser ranges will be affected not only by white noise but
also by large blunders (Section 3.2). For this reason and since the SR
and SRD observables will be generated via an interpolation, it is
important to edit the laser ranges before proceeding with the geometric

and the orbit adjustments.



In the geometric method the recovered baselines will only be
affected by the errors resulting from an improper or from the not yet
reached steady state response (Sections 4.2). The steady state response
of the geometric method, on the basis of a minimum least-squares
solution, is affected only by the observational errors. Such a response,
however, was not possible for longer baselines (Section 4.3.1), and
therefore an overconstrained solution was adopted to form the standards
of comparison with the anticipation that it is the least erroneous when it
is compared either to SRD or to dynamic solutions (Section 4.3.2).

The accuracy of the baselines, recovered via the SRD (Section 4.4)
is assessed from the comparison with the baselines obtained wvia the
geometric methods and the range dynamic mode methods (Section 4.5).
The response of the SRD method to the simplification of the orbital

model has also been investigated (Section 4.6).



Chapter 2

ESTIMATION METHODS

In this chapter an attempt is made to briefly describe the mathematical
models and the principles involved in the geometric and dynamic mode
methods as they are applied to satellite geodesy. Although the
geometric solutions performed in this study are only used as standards
of comparison (Sections 4.3 and 4.5), their mathematical formulation is
presented first because historically the geometric methods were the first

ones to result in accurate differential positioning.

2.1 GEOMETRIC METHODS

Geometric methods are based on the analysis of the relative geometry of
the observations without any reference to the physical processes
creating the problem under question. On the contrary, some or all of
the systematic corrections applied to the observations are computed with
the use of physical models.

In the geometric approach of satellite geodesy (Veis, 1960; Mueller,
1964a), the observed satellite positions are treated as auxiliary
independent points in space, and they are only used to relate the
observations geometrically. This in turn leads to the generation of
space networks. These networks manifest not only the relative geometry
of the observations, but also any a priori information which is necessary
for their realization. Thus each observation relates the position of the
observing station with the observed satellite position. The unknown
parameter vector includes the Cartesian coordinates of the observing
stations together with the Cartesian coordinates of the observed satellite
positions at each of the observing epochs. Since the coordinates of the

unknown satellite positions constitute an independent set of unknowns,



it is necessary to have a sufficient number of observations at each
observing epoch. The number of observations should be sufficient not
only to eliminate the unknown satellite coordinates at each of those
epochs, but also to solve for the unknown station coordinates.

The process described, however, necessitates the usage of
simultaneous (referenced to satellite time) observations without any
reference to the fact that the motion of the satellite obeys the physical
laws of dynamics. These two distinct features create the advantages

and disadvantages of the geometric approach to satellite geodesy.

2.1.1 Mathematical Model

The mapping of the parameter space into the observational space is
referred to as observational modeling. The analytical expression
responsible for the realization of this mapping is referred to as either
the mathematical or the observational model. The mathematical model
employed in the geometric approach is that of the Euclidean range from
a ground station to an observed satellite position expressed in terms of

Cartesian coordinates:

Fij = [(uj—ui)" + (V‘i—V‘)2 + (wj—wi)z]x - rij =0 (2_1)

The quantity rij is the true value of the range observable from the
ground station i to the satellite position j (see Section 3.1), while the
quantities u;, vy, w; and uj, v;, w; denote the true values of the
Cartesian coordinates of station i and satellite position j. These
coordinates may be referred to any arbitrarily chosen Cartesian
coordinate system since ranges are invariant under any rigid body
rotations.

The linearized form of equation (2-1) forms the basis for the
generation of the observation equations when four or more stations are
observing simultaneously (see Section 2.1.3). With these observation
equations the normal equations are derived on the basis of a weighted
constrained least squares adjustment (Uotila, 1967; Krakiwsky et al.,
1967). The resulting normal equations are reduced by eliminating the

unknown satellite coordinates. The reduced normals are then solved to



estimate the stations’ Cartesian coordinates which are finally transformed
to interstation distances.

Inverting the normals on the basis of the minimum required
information (i.e., minimum constraints) leads to baseline errors that
depend solely on the errors of the observed ranges and on their
geometric strength as well. This is true only when the scale has been
properly incorporated into the solution either through the obserwvations
and their geometry, or if this is not possible, through some other

additional constraints (see Section 4.3).

2.1.2 Normal Equations

The observation equations used to derive the normal equations are
obtained from the linearization of equation (2-1). Linearization is
achieved with a Taylor series expansion about the approximate values of
the station coordinates, the satellite coordinates and the observed

ranges as well. The resulting linear equations have the form:

Afj ﬁ,J—ViJ+L1j=O (2_2)
where
Aij = [ 8{] E —aij] (2“3)
aF,j
%7 3uy, vy, wy) (2-4)
[ du, ]
dv‘;
S de
Xij = du} (2-5)
dvi
[ dw;
vy j = residual vector corresponding to the range observable
L, j = the computed minus the observed range



In cases when the geometric strength of the observations is not
good enough to warrant a steady state response, it could still be
possible to reach such a response if estimated or observed interstation
distances are incorporated into the solution (see Section 4.3). This is
accomplished by introducing the interstation distances as fictitious
observations into the adjustment. Appropriate weights should be
applied to these (fictitious) observations in order to avoid any scale
conflicts that might contaminate the solution (Uotila, 1967).

The mathematical model of the interstation distance between stations

k and £ has the following form
Ge = [(ug—u)? + (vg-—vy)? + (we-wy)2]% = Lyp = 0 (2-6)

where L,g is the true value of the fictitiously observed range between
these two stations. Linearization of equation (2-6) about the

approximate station coordinates and the fictitiously observed distance

results in
Cut Xp2 = Vg + Dyz = 0 (2-7)
where
Cer = [ To i -Tp ] (2-8)
3Gy e
Te = (2-9)

ad(up, vg, wg)

Ve = residual of the (fictitiously) observed interstation distance

Dy2 = the computed minus (fictitiously) observed interstation

distance

So far the observation equations have been developed on the basis
of one range observation and one interstation distance. Considering
many range observations and many fictitiously observed interstation

distances, equations (2-2) and (2-7) take the following form:



AR-V+L=0 (2-10)

CR -Ve +D =0 (2-11)

These equations can be rewritten as

NENEN

and with some obvious substitutions they take the following form:
AR + L¥ = VX (2-13)

Equation (2-13) forms a set of observation equations which are used to
derive the normal equations on either deterministic or statistical
grounds.

Deterministically the principle of least squares requires that the
quantity (V¥Tp¥y¥ 4 ffTPx)E) assumes minimum value, subject to the
condition A¥X - V¥ + L¥ = 0. The matrix Py is the weight matrix
associated with the coordinates of the ground stations and of the

observed satellite positions, while the weight matrix P¥ takes the
following form

« P 0
p¥ = 0 P, (2-14)

where P and P are the weight matrices associated with the range
observables and the (fictitiously) observed interstation distances
respectively.

Statistically the maximum likelihood principle requires maximization of
the a posteriori conditional density function of the parameter vector b4
given that the observations L*¥ have been obtained. The resulting
estimator £ is referred to as Bayesian least squares estimator. Both of
the above principles lead to the same estimator X only if normality is

assumed not only for the a priori density function of the estimated
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parameter vector X, but also for the conditional density function of the
observational vector L¥ given that the parameter vector X has been
estimated. These assumptions should only hold for the maximum
likelihood principle since any least squares estimator is a distribution
free estimator. The estimator X is obtained from the resulting normal

equations (Uotila, 1967; Krakiwsky et al., 1967; Cappellari et al., 1976):

ATPA + Py cT X ATPL

where k¢ are the Lagrange multipliers associated with the (fictitiously)
observed interstation distances. Elimination of the Lagrange multipliers

from equation (2-15) leads to the following form for the estimator X:
X = —(ATPA + CTP(C + Py)~! (ATPL + CTP.D) (2-16)

Substitution of equations (2-2) through (2-5) and (2-7) through
(2-9) into equation (2-16) followed by elimination of all the satellite

coordinates leads to the following equations (Krakiwsky et al., 1967):
- The 3x3 diagonal matrix associated with the kth ground station

-1
Niw = [§ 23" Pig ang) - I {angT Puy aig [§ ayT Pijoag)

z
a7 Py ag) + P+ [ ] T Pue T (2-17)

~ The 3x3 off-diagonal matrix corresponding to the kth and sth ground

station
-1
Nit = -1 (2™ Py ayy [? ayT Pig aiy)  aeyT Prjany) +
[ 9] mm Pue 1 (2-18)

~ The 3x1 constant vector associated with the kth ground station
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U = - [)j: auy" Piy Liy) + ) {an;™ Puy g [§: aiyT Pyjayy) -
Ii: aijT Pij Ly } + [ (1) ] TeT Pxe Dy2 (2-19)

In equations (2-17) and (2-19) the j summation is performed over all
the satellite positions observed from station k, while in equation (2-18)
the j summation is performed over all the satellite positions observed
simultaneously from both stations k and £ respectively. The summation
i, on the other hand, is performed over all the stations observing the
satellite position j simultaneously. In these three equations the number
1 is used only when the interstation distance between the stations k
and £ is involved in the solution, otherwise the value of 0 is used.

Equations (2-17) through (2-19) form the basis for the estimation of
the ground station coordinates by inverting the normals through a
procedure accredited to Banachiewich. This procedure is carried out in

two steps.

- The first step involves the representation of the normal matrix as
a product of right and left triangular matrices with the left

triangular matrix having unit diagonal elements.

- The second step involves the computation of the inverse normal
matrix on the basis of only the inverted diagonal elements of the
right triangular matrix and the off-diagonal elements of the left

triangular matrix.

The above procedure is very closely related to the Cholesky algorithm
(Uotila, 1967).

2.1.3 Critical Configurations

In the geometric approach of satellite geodesy the observed satellite
positions (targets) are treated as auxiliary independent points in space.
They are used only to relate the observations geometrically through the
resulting range space networks (see Section 2.1). In certain cases the

ground stations and/or the targets which form the vertices of this
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network are involved in a kind of configuration for which a unique
adjustment is impossible although the number of observations is
sufficient and the coordinate system well defined. These configurations
are referred to as "critical."

With range observations the critical configurations have been
extensively studied in the past (Rinner, 1966; Blaha, 1971; Tsimis, 1972,
1973). The critical configurations have been traditionally analyzed
according to whether all of the observing stations are either in a plane
or generally distributed in space. For both of these cases the resulting

-

singularities are divided into three categories:

1. Singularity A, resulting from the relative geometry of an individual
station connected to its observed targets.

2. Singularity B, resulting from the relative geometry of the observing
stations only.

3. Singularity C, resulting from the relative geometry of all the
observing stations connected to their observed targets when

singularity A and singularity B are not present.

2.1.3.1 Critical configurations when all of the observing stations

are in a plane. When all of the observing stations are in a plane the
singularity problem is analyzed according to the number of stations
observing all the targets. This number may be three or more, or less
than three. The number three is important since ranges from three
stations are needed to eliminate the coordinates of one target, provided
that this target is not located on the plane of these three stations
{Blaha, 1971).

If the number of ground stations observing all the targets is three
or more, singularity A occurs when an individual station—excluding the
stations used to define the coordinate system, since for these three
stations singularity A cannot occur—is either observing less than three
distinct targets or is in the same plane with all of its observed targets.
Furthermore, singularity B occurs when all the observing stations but

one are lying in a straight line or more generally when all the stations
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are lying on a second-order curve. Since at least five stations are
needed to determine a second-order curve, singularity B can only be
avoided if six or more stations are involved. In the absence of
singularities A and B singularity C occurs when the stations making
off-plane observations (i.e., observed targets are not in the same plane)
are not themselves off-curve stations (i.e., not lying in the same
second-order curve). To avoid singularity C at least three off-curve
stations should make off-plane observations (Blaha, 1971; Mueller et al.,
1975). In the case when all the stations observe all the targets,
singularity A loses its importance because it always implies singularity
C, since off-plane observations are necessary to avoid singularity C.

When there do not exist three stations observing all the targets,
elimination of the coordinates for all the targets using the same three
stations cannot be achieved. Thus, in the elimination process one, two
or all of these three stations will have to be replaced. This leads to
the first, second and third replacement respectively, and therefore to at
least four-station events.

We first denote with k the station used in the first replacement. In
this replacement singularity A for all the stations but k, or singularity
B for all stations would occur as though there were three stations
observing all the targets. For station k, however, singularity A occurs
if any new stations coming into play are lying either on the x-axis of
the local coordinate system (e.g., line formed by two of the three
stations used to define the local coordinate system) or in the
intersection line (denoted by 4£) of the plane =n (see below) with the
plane of the ground stations. The plane =, if it exists, is the plane
containing station k together with the satellite positions (denoted by j)
that were observed by this station (e.g., k) up to the epoch at which
the new station(s) started observing. Singularity C, in the absence of
singularities A and B, is further analyzed according to whether j, are
off-plane or in-plane targets. If j, are off-plane targets, singularity C
occurs whenever stations making off-plane observations are not

themselves off-curve stations. The case when j, form in-plane targets
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is not discussed here because it is very unlikely to encounter in
practice. This case, of rather academic interest, is discussed in (Blaha,
1971, page 63).

Next we denote by s8” the station used in the second replacement.
In this replacement, if there is no other station 8"’ to start observing
for the first time after s° has started, singularity A occurs as though
only the first replacement would have taken place. However, with

’

station 8°° present, singularity A for station k occurs if, in addition to
the above, the station s8°° is lying either in the x-axis of the local
coordinate system or in the line £, Furthermore, singularity A for
station 8° occurs if in addition to being in the plane »° (defined below),
the station 8°° is also lying either in the line defined by the station
used as the origin of the local coordinate system and the station k or in
the intersection line (denoted by £°) of the plane =»° with the plane of
the ground stations. The plane n", if it exists, is the plane containing
the station s’ together with the targets (denoted by jg’) observed by
the station 8° up to the epoch at which the station 8°° started
observing. Singularity B occurs as though three stations observing all
the targets exist. If j;- and j, are off-plane targets, in the absence of
singularity A and B, singularity C occurs, when no other stations
besides k and s° exist to make off-plane observations. The case when
Jg’ or jy form in-plane targets is not discussed here because of the
unlikelihood of encountering it in practice.

The singularities resulting from three or more replacements are
similar to the ones described above. By avoiding singularities A, B and

C a nonsingular network can only be formed if at least six stations in at

least four station events are involved. This is so because five stations

are needed to define a second-order curve and only the sixth station is
possible to serve as an off-curve station.

Once a nonsingular network has been realized any extension of it
will result in a nonsingular one if for any additional station singularity
A is eliminated and if no target is lying in the plane of the ground

stations.
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2.1.3.2 Critical configurations when the observing stations are

generally distributed in space. When the ground stations are in general

configuration, singularity B loses its meaning because the effect of
ground stations cannot be separated from that of the targets.
Consequently, singularity B will not be considered here. However,
another type of singularity called "reverse singularity B" is the
singularity B if one assumes that the satellite points (targets) observe
the ground stations. Therefore, this singularity occurs when all the
targets are in a plane in a second-order curve. This in practice could
approximately occur when two short passes of about the same altitude
have been observed.

Having the observing stations in a general configuration, a
nonsingular network can be formed if at least six targets are being
co-observed by at least four stations. Accordingly, the analysis of
critical configurations proceeds by grouping the ground stations in
tetrads ("quads"). With four stations observing all the targets,
singularity A occurs only with respect to the fourth station because
singularity A never occurs for the three stations that have been used
to define the local coordinate system (Blaha, 1971). With respect to the
fourth station, singularity A occurs if all the targets are lying on a
plane through this station, or if all the targets are on the plane formed
by the stations used to define the local coordinate system.
Furthermore, in the absence of singularity A, singularity C occurs when
all the observing stations and all the targets are lying on a
second-order surface.

With more than four stations observing, the singularity problem is
analyzed by grouping the observing stations in quads. If the number
of stations observing all the targets is three or more, singularity A
occurs, as though all the observing stations were lying on a plane (see
Section 2.1.3.1). In the absence of singularity A, singularity C occurs
either when all the observing stations with their observed targets are
located on a second-order surface or when each tetrad of stations
together with its observed targets are located on specific second-order

critical surfaces. These surfaces intersect each other in one
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second-order curve containing the three stations used to eliminate the
coordinates of each target and to define the local coordinate system.
Furthermore, when all the stations are co-observing, these second-order
critical surfaces coincide,

When three stations observing all the targets do not exist, then the
concept of station replacement should be ﬁtilized in exactly the same
way as described in the previous section. Proceeding with this concept
it is found that singularity A occurs as though three stations observing
all the targets exist. As for singularity C, it is again associated with
other specific second-order surfaces in addition to the ones resulting in
singularity C when three stations observing all the targets exist.

By avoiding singularities A and C and reverse singularity B a
nonsingular network can be formed. What is important to keep in mind
is that when the ground stations are generally distributed in space a

nonsingular network can be formed if at least six targets are

co-observed by at least four stations. In fact four stations and five

targets can uniquely define a second-order surface, and the sixth target
could make the network nonsingular if it is not located on this surface.

Once a nonsingular network has been realized, an extension of it
will result in a nonsingular one if singularity A is eliminated for any
additional station and if no targets are on the plane of the three

stations defining the Cartesian coordinate system.

2.2 DYNAMIC AND SEMIDYNAMIC MODE METHODS
In contrast to the geometric methods, the observed satellite positions in
the dynamic and in the semidynamic methods are not treated as auxiliary
independent points in space but rather they are constrained to lie in a
space curve (Schwarz, 1969). This curve should resemble within the
required degree of accuracy the satellite orbit under question. The
satellite orbits, on the other hand, are modeled either empirically or
dynamically or by combining both empirical and dynamical modeling.
Empirical modeling of satellite orbits was extensively used in the

early years of satellite geodesy since many of the model parameters
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entering the equations of motion were not known with the degree of
accuracy required for precise geodetic work (Mueller, 1964b). These
methods are used today in wvery special circumstances and only in
combination with dynamic modeling (Tapley et al., 1985a).

Dynamic modeling results in three second-order differential
equations or six first-order differential equations referred to as
equations of motion of the satellite. These differential equations are
integrated either analytically (i.e., general perturbation methods) or
numerically (i.e., special perturbation methods) to generate the satellite
orbits.

In the general perturbation methods, the equations of motion of the
satellite are reformulated in terms of a set of orbital elements leading to
a set of differential equations which can be integrated analytically.
Unfortunately, a closed form analytical solution for the equations of
motion of the perturbed two-body problem does not exist. It is
possible, however, to obtain approximate analytical solutions either by
restricting the complexity of the perturbation model or by truncating
high power expansions (Kaula, 1961, 1966; Mueller, 1964b; Goad, 1977;
etc.) These solutions are approximate and in many cases cannot be used
for precise geodetic work. They are extremely useful, however, in order
to gain a keener insight into the effects of various perturbing forces on
the satellite orbits.

In the special perturbation methods, the equations of motion of the
satellite are integrated numerically (see Section 2.2.3). The main
advantage of these methods is that all the perturbing forces can be
accommodated to a high degree of accuracy. The special perturbation
methods, on the other hand, have proven to be computationally more
efficient, if one takes into consideration the high repetition rate of
recent geodetic observations (Rizos et al., 1985; Krakiwsky et al., 1985).

A combination of empirical and dynamic modeling is usually employed
either when the satellite orbits are integrated continuously over long
periods of time (i.e., two months or more) or when unexplained
perturbing accelerations are present. In the latter case the dynamic

models are supplemented with empirical models for the as yet not fully
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understood perturbing accelerations while in the former the empirical
models are employed to account for the accumulated along-track,
cross-track and radial errors (Tapley et al.,, 1985a). For instance, the
draglike acceleration of Lageos’ orbit which causes a decay of the
semimajor axis at a rate of 1 mm/d is modeled empirically (see Section
2.2.5).

The dynamic mode methods are further subdivided into semidynamic
(short-arc) and dynamic (long-arc) methods. There is no clear
distinction between these two terms and their exact meaning depends on
the investigator and on the kind of problem being analyzed.

In the present study the estimation of the baselines is performed in
the semidynamic mode environment. In this environment the lengths of
the arcs employed are relatively short (i.e., mostly up to three days and
very'rarely up to seven days) (see Section 4.4). A relatively short arc
is defined as having a maximum length over which the total modeling
error of a simple dynamic model is well below the noise level of the
observations (i.e., an order of magnitude or less). Consequently, with
this definition one may select a relatively simple dynamic model and then
determine the length of the arc, or one may choose the length of the
arc and then determine the required sophistication for the dynamic
models. With such a procedure the systematic errors caused by model
imperfections cannot accumulate up to a level that may corrupt the
semidynamic mode solution. The relatively short arcs, however, are not
stable in the sense that their position and orientation in space depends
primarily on the geometry of the observations. This instability may also
cause ill-conditioning of the normal equations (see Section 4.4).
Furthermore, relatively short arcs cannot be well tracked to bring
tracking sites of a global extent into a consistent satellite reference
frame. This implies that it is not possible to use semidynamic mode
methods for absolute position determination. Instead these methods can
be effectively used for baseline determinations (Latimer et al., 1977;
Christodoulidis et al.,, 1981; Pavlis, 1982; Section 4.4). Baseline estimates
are even more accurate if the observables are insensitive to the

position, orientation, and the shape of the trajectory as is the case, for
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instance, with the Simultaneous Range Difference observables (see
Section 4.4; Pavlis, 1982). With range observables, which are sensitive
not only to the position and orientation of the trajectory in space but
also to its shape, it is still possible to obtain accurate baselines if a

local support tracking network is available (Christodoulidis et al., 1981).

2.2.1 Simultaneous Range-Difference Semidynamic Mode Method

On the basis of the discussion presented in the previous section and
keeping in mind that our aim is to achieve highly accurate differential
positioning, wc have chosen to use in this investigation the semidynamic
(short-arc) method formulated in the context of special perturbations
(see Section 2.2.3). Furthermore, the laser range observations have
been transformed to Simultaneous Range-Differences (SRDs), and
although differencing is a noise generating operation it is anticipated
that these observables are less affected by the biases in the orbit, the
reference frame and the observations themselves (Pavlis, 1982).

Using laser range observations to Lageos it is impossible to obtain
strictly simultaneous observations not only because Lageos is a passive
satellite but also because there will always exist synchronization errors
among the varioug observing stations. Therefore Simultaneous Range
Differences can only be obtained through an interpolation (see Chapter
3). More specifically, the observing stations are divided into pairs of
simultaneously observing stations. For each pair the station with the
most observations is interpolated to generate ranges at the observed
epochs of the alternate station. Finally the interstation distances for
each of the pairs involved are estimated by processing the generated
SRDs through a least squares adjustment formulated in the context of

the special perturbation methods as applied in the semidynamic mode

environment.

2.2.2 Mathematical Modeling

The mathematical model for the Simultaneous Range Difference (SRD)
observable §,; is obtained by subtracting the Euclidean ranges from

station 2 and station 1 to the simultaneously observed satellite position j
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6p5 = {(8s - %) 5y - iz]]x - {85 - %) (5, - ’-‘1”X (2-20)
where the wvectors §j = (uj, Vi wj)T, }-(1 = (u,, vi, w,)7 and )-(2 = (u,,
va, W3)7 denote the Cartesian coordinates of the satellite position j,
ground station 1 and ground station 2 respectively. Since the SRDs are
invariant under any rigid body rotation the above wvectors could be
expressed in any arbitrarily chosen Cartesian coordinate system. In the
present study, the vectors S i )_(, and }-(3 at epoch j are expressed in a
Cartesian coordinate system whose origin is conveniently chosen to
coincide with the center of mass of the earth, and its orientation is
aligned to that of the true-of-date system (Mueller, 1969).

The adjusted parameters, in any estimation procedure involving a
dynamic process, are transformed to a reference frame in which they
can be considered constant for a certain period of time. This period
should be long enough to allow for collection of a sufficient number of
observations needed for a reliable recovery of the adjusted parameters.
For this reason the ground station coordinates are transformed to a
terrestrial reference frame (TRF) while the coordinates of the satellite at
epoch j are transformed to a celestial reference frame (CRF) with the

help of the following formulas (see Section 2.2.4)
S; = NPRy ; X, =8TY; , i=1,2 (2-21)

The quantities S, N and P designate the earth rotation, the nutation and
precession matrices respectively, while the vectors ﬁj, ’;', and ‘;'2 denote
the inertial position vector of the satellite at the epoch j and the
earth-fixed position vectors of stations 1 and 2 respectively. The
inertial and earth-fixed frames correspond to the CRF and TRF frames
respectively as they are described in Section (2.2.4). Substituting

equation (2-21) into (2-20) one obtains
% %
505 = [03,70y,) " - [b5,™,,)" = Ipj,| - Inj. | (2-22)

where
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Dy, = NPR; - STY, and Dy = NPR; - S7Y, (2-23)

The satellite position vector ﬁj is a function of an initial state
vector and a large number of parameters affecting the motion of the
satellite (i.e., potential coefficients, reflectivity, etc.). The choice of the
model parameters to be estimated depends on the data coverage and
distribution which in turn dictates the adopted lengths for continuous
integration of the satellite orbit (see Section 2.2.1). In the present
study, the shape of each of the satellite arcs involved is assumed known
and only its position and orientation in space is adjusted to "best” fit
the available data (see Section 4.4). Thus, the only adjusted parameters
inherent to the satellite position vector 1-21 are the components of the
initial state vector of the corresponding arc.

In the derivation of the observation equations, on the basis of the
equation (2-20), one needs the satellite position vectors at each of the
observing epochs together with their partial derivatives with respect to
the corresponding initial state wvector. The former is obtained by
integrating the equations of motion of the satellite while the latter is
obtained by integrating the wvariational equations of state (see Section
2.2.3). The partial derivatives with respect to earth-fixed station
coordinates, also needed in the derivation of the observation equations,
are easgily obtained by differentiating equation (2-20) (see also Pavlis,
1982). The resulting observation equations are used to obtain the
normal equations through a weighted least-squares adjustment (see
Section 2.2.6). The normal equations are subsequently solved to estimate
the initial state vectors for each of the arcs involved together with the
earth-fixed coordinates which are finally transformed to interstation
distances.

In the present study the initial state vectors are treated as
"nuisance" parameters, and therefore one is not concerned with how well
each of those initial state vectors has been recovered as long as the a
posteriori variance of unit weight is close to unity. In fact, the reason
for using SRDs instead of ranges is to reduce the need for accurate

knowledge of the satellite orbits and yet to increase the potential for

22



baseline estimation with an accuracy compatible to or even better than
that of the observations. This is possible because SRDs have the
potential to reduce the effects of biases caused not only by the orbital
model and the reference frames but also by eliminating uncorrectable

systematic errors affecting the laser range observations (Pavlis, 1982).

2.2.3 Orbit Determination with the Method of Special Perturbations
Dynamic and semidynamic methods, based on special perturbations,
require integration of the satellite’s equations of motion. The degree of
sophistication in formulating these equations depends on the integration
length and the required accuracy.

Following the MERIT standards the relativistic perturbations are
ignored from the equations of motion (Melbourne et al.,, 1983).
Accordingly, ephemeris time (t) constitutes the independent variable in
the equations of motion. Up to 1983, ephemeris time was used as an
independent variable in the planetary equations of motion and therefore
in the construction of all the almanacs. Since January O0h 1984,
ephemeris time has been replaced by Terrestrial Dynamical Time (TDT)
and Barycentric Dynamical Time (TDB) (The Astronomical Almanac, 1984).
This was a necessity since data collected in interplanetary missions are
routinely processed in the context of the relativity theory (Moyer, 1971).
In this context TDT time corresponds to proper time (i.e., time measured
by the observer’s clock) while TDB corresponds to coordinate time (i.e.,
time measured at the barycenter of a motionless solar system in the
absence of all gravitational fields).

At each observing epoch j, the ephemeris time (t J) is computed from

the Universal Coordinated Time (UTC j) with the help of the following

formula

ty = 328184 + [TAI - UTC]; + UTC; = TDT (after 1984) (2-24)
where

t; = ephemeris time at the epoch j

23



[TA1 - UTC]j = no. of leap seconds at the epoch j (The Astronomical
Almanac, p. B5)

UTC; = Universal Coordinated Time at the epoch j.

Using the ephemeris time (t) as an independent variable, the Lageos
equations of motion take the following form (Cappellari et al.,, 1976;
Pavlis, 1982):

R = Rpw + Rys + Rrp + Rgp + Rat (2-25)

Each of these accelerations is expressed relative to the center of mass

of the earth. More specifically

- 2 T
R = %—,— [uj, Vi, wj] = total quasi-inertial Lageos acceleration at

the epoch j
Rpy = gravitational acceleration due to point masses

Rys = gravitational acceleration due to nonsphericity of the gravi-

tational potential
Ryp = acceleration due to solid earth tidal effects
ﬁsg = acceleration due to solar radiation pressure

I-IAT = Lageos empirical drag—like acceleration

The acceleration vector l-i is a function of an initial state vector and a
large number of parameters affecting the motion of the satellite. These
parameters pertain to the gravitational potential, to solar radiation
pressure, etc. As it was described in the previous section, the only
adjusted orbital parameters considered in this study are the initial state
vectors of all the arcs involved. With these orbital parameters the

variational equations assume a very simple form (Pavlis, 1982):

Y(t) = A(t) - Y(t) (2-26)
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with initial conditions

Yo = [ 1{o ]:nus (2-27)
where
y(t) = | —2BL (2-28)
a(R(t,), R(to)) |, .
and
_ | R _
A(t) = 3§(t)]3x3 (2-29)

The matrix Y(t) is referred to as the state transition matrix and is used
to map the variations of the initial state into variations of the current
state.

Equations (2-25) and (2-26) can be integrated either by one-step or
by multi-step methods. In each integration step, the multistep methods
require fewer derivative evaluations than the one-step methods of
compatible accuracy. Fewer computations, on the other hand, not only
reduce the round-off errors but also require less computing time.
Furthermore, since these methods possess a larger number of parasitic
solutions they are more susceptible to instability problems.

The multistep algorithm used in our study employs a self starting,
variable step, variable order predictor-corrector mode of operation.
This mode selects the order automatically while the stepsize is subject
to accuracy requirements and numerical stability. Keeping the stepsize
constant, the predictor-corrector is reduced to an Adams-Bashforth
predictor of order q and to an Adams-Moulton corrector of order q + 1.
With this algorithm the second-order differential equations are
integrated directly without reducing them to a first-order system,
because a second-order set exhibits better numerical stability
characteristics, The described algorithm was developed and implemented

in computer coded form by Krogh (1969a, 1969b, 1973a, 1973b, 1974).
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2.2.4 Reference Frames and Systems
Reference frames constitute realizations of reference systems. The
reference frames are used to describe the spatial relationships and the
temporal variations of objects on the Earth (i.e., terrestrial frames) and
in space including the Earth (i.e., celestial frames) (Kovalesky and
Mueller, 1981). A reference system consists of an underlying principle
and all those elements (e.g., physical environment, theories and
constants) that are necessary to accomplish its realization. The elements
of a system, depending on the application and the accuracy
requirements, are selectively chosen and therefore the term
"conventional system" is often used to designate the selection process
that is usually involved in any realization of a reference system.

In this context the IAU/IUGG MERIT and COTES Joint Working
Group recommended the following concepts in regard to reference

systems and frames (Wilkins and Mueller, 1986):

The Conventional Terrestrial Reference System (CTRS) be
defined by a set of designated reference stations, theories and
constants [necessary elements], chosen so that there is no net
rotation or translation between the reference frame and the
surface of the earth [underlying principle]. The frame is to be
realized by a set of positions and motions of the designated
reference stations.

The Conventional Celestial Reference System (CCRS) be defined
by a set of designated extragalactic radio sources, theories and
constants [necessary elements], chosen so there is no net rotation
between the reference frame and the set of the radio sources
[underlying principlel. The frame is to be defined by the
positions and motions of the designated radio sources. The origin
of the frame is to be the barycentre of the solar system.

The above concepts are to be incorporated in the operation of the new
International Earth Rotation Service (IERS). This service is scheduled
to start operating as of January Oh, 1988 (Mueller and Wilkins, 1986).

In the Newtonian framework, the reference frame implied by a CCRS
can be considered as being an ideal inertial frame in the sense that the
time 1is homogeneous and the space described by this frame is

homogeneous and isotropic (Landau et al.,, 1960). In the general
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relativistic framework, on the other hand, the reference frame realizing
a CCRS is aimed to describe the curved space time for which a global
inertial reference frame does not exist (Moritz, 1979; Fukushima, 1986)!
This is the reason why, in the above recommendations, the term
"inertial" has been dropped and the term "celestial" has been used

instead.

For precise geodetic work, these seemingly conceptual differences
manifest themselves when 107® or 10~? accuracies are sought.
Therefore, when working at such accuracy levels, care should be taken
to account for relativistic effects either by using Newtonian formalism
with small corrections (Moritz, 1979) or by formulating the problem
entirely in the general relativistic framework (Fukushima, 1986). In the
present study, in accordance with the MERIT standards and since the
obtained accuracies hardly reach the 10~2 level, we have used the

Newtionian formaliém to formulate the equations of motion of the satellite.

The status today in terms of reference systems and frames is
confusing because the user community employs a variety of different
celestial systems (i.e., extragalactic radio source systems, stellar
systems, dynamical systems, etc.) and a variety of different terrestrial
systems as well (i.e., BIH terrestrial reference system, CSR terrestrial
reference systems, etc.). Investigations, however, are currently
underway with the objective of linking all of the available terrestrial
systems into a unified terrestrial system referred to as "BIH Terrestrial
Reference System" (BTS) (Boucher and Altamimi, 1985, 1986). Linking
different celestial systems, through their frames, into an ideal celestial
frame is8 not an easy task not only because of lack of collocations but
also because daily polar motion resolution is necessary (Mueller, 1985).
This kind of resolution is not achievable by the satellite related systems
due mainly to the deficiencies in nutation theory (Himwich and Harder,
1986) and to inadequate observational coverage.

The choice of ideal terrestrial and celestial frames is not important
in baseline estimation. It is important, however, to consistently link the

involved terrestrial and celestial reference frames, by choosing the
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appropriate set of transformation parameters. Effective choice of the
transformation parameters would only assure a reliable recovery of the
relative geometry of the observations since these parameters cannot be
effectively recovered in a semidynamic mode environment. The relative
geometry of the observations manifests the way the satellite arcs are
related to the observing stations. Reliable recovery of the relative
geometry, on the other hand, results in accurate baseline estimation
simply because baselines are estimable quantities. Estimable quantities
are molded by the geometric and dynamic characteristics creating the
problem under question.

In the present study, the Terrestrial Reference Frame (TRF) is
implied by the gravity field used to integrate the equations of motion
and by the adopted polar motion series. The origin of the TRF frame,
relative to the center of mass of the earth, is defined by the potential
coefficients C;o, C;, and S,,, while its orientation is primarily defined
by the potential coefficients C,, and S, as well as C,, and S,,. More
specifically, the coefficients C,, and S,, define the orientation of the
third axis, while C,; and S,; define the orientation of the first axis.
The orientation of the first axis, however, is weakly defined because the
Earth’s equatorial moments are nearly equal (i.e., C,, £ S;3).

The modified GEML2 gravity field, proposed by the MERIT standards,
has been replaced in this study by the PGS1680 gravity field
(Christodoulidis et al., 1985). This violation of the MERIT standards was
necessary to make the gravity field consistent with the adopted BIH
polar motion series. The modified GEML2 gravity field has all its
coefficients but S,;, and C,;, equal to the coefficients of the GEML2
gravity field (Lerch et al., 1985). C,; and S,, have been modified to be
consistent with the mean BIH polar motion values, computed over a
complete wobble cycle which lasts from 6.5 to 7 years (Melbourne et al.,
1983). Modifying only the C,, and S,, has caused inconsistencies as to
what frame the coefficients of the modified GEML2 field refer. As a
result, the PGS1680 gravity field was developed in order to avoid these
inconsistencies and the resulting confusion as well. In the development

of this field the coefficients S,, and C,, were constrained to the BIH
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implied values while the remaining coefficients were free adjusting
(Christodoulidis et al., 1985).

The coefficients C,,, C,, and S;,; of the PGS1680 gravity field are
zero thereby imposing the origin of the TRF frame to coincide with the
center of mass of the earth. The computed UT1 time, on the other
hand, is assumed to be consistent with the x axis of the implied TRF
frame (see Section 4.3).

The Celestial Reference Frame (CRF) employed for the integration of
the equations of motion, is realized from the implied TRF frame through

the following transformation (Mueller, 1969):

(CRF) = (SNP)T(TRF) (2-30)
with
S = R, (—xp) R, (-yp) Ra (GAST) (2-31)

where according to the MERIT standards the following quantities have

been used.

P Precession matrix based on the IAU (1976) system of astronomical
constants (Lieske, 1979)

N Nutation matrix based on the 1980 IAU theory of nutation (Wahr,
1981a). This matrix implies a pole whose nearly diurnal space-fixed
and earth-fixed motions vanish. This pole is referred to as the
Celestial Ephemeris Pole (CEP) (Mueller, 1981; Moritz and Mueller,
1987)

GAST # GMST (OhPUT1) + f(UT1) + EQ.E (2-32)

GMST(OMUT1) = 6™ 41™ 50854841 + 8640184$812866 Tu + 05093104 Tu?

- 682 x 1076 Tu? (2-33)
where
f = conversion factor from Universal time to sidereal time
= 1.002737909350795 + 5.9006x107'* Tu — 5.9x10715 Tu?
Tu = Julian centuries elapsed from J2000.0

UT1 = UTC(USNO) + (UT1 - UTIR) + [UTIR - UTC(BIH)] +
+ [UTC(BIH) — UTC(USNO)] (2-34)

29



UTC(USNO) = USNO Universal Coordinated time (time scale used to

time tag the observations of the GLTN stations)

UT1 - UTIR = Tidal variations of UT1 caused by zonal tides with
periods up to 35 days (BIH Annual Report 1981 onwards, Table Bl)

UT1R - UTC(BIH) = Variations of the regularized UT1 (i.e., UTIR)
from the UTC(BIH) (BIH Annual Reports, Table 8)

UTC(BIH) - UTC(USNO) =Variations of UTC(USNO) in relation to
UTC(BIH)

EQ.E = Ay - cos (& + Ae) (2-35)

Ay = Nutation in longitude computed from the 1980 IAU nutation
theory

&

Mean obliquity of the ecliptic

23° 26’ 219448 - 4678150Tu - 0Y00058Tu? + 0V001813Tu? (2-36)

Az = Nutation in obliquity computed from the 1980 IAU nutation
theory

The CEP pole positions xp and yp in equation (2-31) have been taken
from the smoothed wvalues of Circular D (BIH Annual Report, 1983, 1984,
Table 7). These pole positions are referenced to the 1979 BIH system
during the first period of the MERIT Main Campaign (Sept. 1983 - Dec.
1983), while during the remaining period of the campaign (Jan. 1984 -
Dec. 1984) they are referenced to the BIH Terrestrial System (BTS). Our
study in not affected by this transition because in shifting from the
1979 BIH system to the BTS system a nonrotation constraint was applied

to assure the continuity of the BIH system (Boucher and Feissel, 1984).

2.2.5 Orbital Model
The set of elements necessary to determine a satellite orbit constitutes
the orbital model of the satellite. Thus, an orbital model consists of all

those elements that are essential to formulate and integrate the
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equations of motion (i.e., perturbations to be considered and associated
assumptions, initial conditions, etc.).

The Lageos state vectors required in the evaluation of the
observation equations (Section 2.2.6) are obtained by numerically
integrating the equations of motion (2-25). In this equation the inertial
accelerations are expressed relative to the geocenter. The components,
however, of Lageos’ inertial acceleration caused by the nonsphericity of
the earth are evaluated in the TRF frame and subsequently are
transformed into the corresponding CRF frame, while the components of
the remaining inertial accelerations are directly expressed in the
corresponding CRF frame. The two-step procedure used to evaluate the
Lageos inertial acceleration caused by the nonsphericity of the earth is
necessary because the gravity potential coefficients are conveniently
expressed in a TRF frame. Expressing these coefficients directly in a
CRF frame would make them time dependent and therefore a potential
source of unnecessary complications.

The aim of the present study is not to estimate the Lageos orbit
with the highest accuracy but rather to model it as simply as possible
and yet be able to recover the baselines with an accuracy compatible to
or even better than that of the observations. With this in mind the
MERIT standards have been violated whenever the proposed model is
complicated and cumbersome to incorporate into the solution. In such
cases a simpler model has been adopted. It turns out, however, that in
some cases the employed orbital model could be further simplified

without affecting the accuracy of the recovered baselines (Section 4.6).

2.2.5.1 Point mass gravitational acceleration. The point mass Lageos

gravitational acceleration based on the effects of the three major
perturbing bodies (Earth (E), Moon (M) and Sun (S)) and expressed
relative to the geocenter takes the following form (Cappellari et al.,
1976; Pavlis, 1982)

- rf My Mg ©f My ©¥ Mg r§
Rpw = GMg|- e - 1 —L— _ S P g (2-37)
OUTEL Tl Me Qgpls Me [zl Me Japle  Me [gsfe

31



where

rf, ), rf = Lageos position vectors relative to the center of
mass of the Earth, the Moon and the Sun respectively

rf, rf =: Earth position vectors relative to the center of mass
of the Moon and the Sun respectively

My Mg .

_, = =: ratios of lunar and solar masses to the mass of the

Me * Me Earth

GMg =: geocentric gravitational constant

For the evaluation of equation (2-37), one needs the Lageos geocentric
position vector as well as the geocentric position vectors of the Moon
and the Sun respectively. The Lageos geocentric position vectors are
obtained from the numerical integration of the equations of motion while
the heliocentric position vector of the Earth and the geocentric position
vector of the Moon are calculated from the information supplied by the
DE/LE200 lunar planetary ephemeris (Standish, 1981). This ephemeris is
disseminated in terms of Chebychev coefficients. These coefficients can
only be used to calculate the geocentric positions of the Moon and the
barycentric positions of remaining planets and the Sun. With this
information, however, one can very easily calculate the position of any
desired planet with respect to any of the remaining planets and to the
sun as well.

The reference frame implied from the computed coordinates of the
planets has been accurately adjusted to the dynamical equinox J2000.0
(ibid.) The Chebychev coefficients of the DE/LE200 lunar planetary
ephemeris are based on the planetary coordinates estimated through the
numerical integration process involved 1in the adjustment of
interplanetary observations collected over a long period of time (ibid.).
In this adjustment, the planetary equations of motion were formulated on
the basis of the isotropic, parametrized post-Newtonian (PPN) n-body
metric (Moyer, 1971). The independent variable in the PPN metric is the
Barycentric Dynamical Time (i.e., coordinate time), and therefore this

time scale should be used as an entry to the DE/LE200 ephemeris.
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The TDB time at any epoch j is computed from the ephemeris time of the

same epoch via the following formula

where
TDBy = Barycentric Dynamical Time at the epoch j
t; = ephemeris time at epoch j, obtained from equation (2-24)

In the PPN framework the ephemeris time coincides numerically but not
conceptually with the Terrestrial Dynamical Time (i.e., proper time).
Thus, TDB time at any epoch is obtained by adding to the ephemeris
time of the same epoch a small correction AT. This correction accounts
for the general relativistic effects involved in the transformation of
proper time (i.e., TDT time) to coordinate time (i.e., TDB time). An
approximate value for the correction AT is given by the following

formula (Astronomical Almanac, 1984)

AT = 09001658 sin (g) + 0.000014 sin (2g) (2-39)
where
g€ = 357:53 + 35999.05 Tu (2-40)

In both of these equations (2-39 and 2-40), higher-order terms have
been neglected, g designates the mean anomaly of the Earth in its orbit,
and Tu designates the Julian centuries elapsed since J2000.0,

To complete the evaluation of equation (2-37), one still needs the
ratios of the lunar and solar masses to the mass of the earth as well as
the geocentric gravitational constant. For the mass ratios, we have
used the values recommended by the MERIT standards, but for the
geocentric gravitational constant the value estimated simultaneously with

the potential coefficients of the PGS1680 gravity field has been used:

GMg = 3.986004359 x 10!'4 m3/s? (2-41)
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The scale in the range dynamic mode methods is implied not only by the
adopted value of the geocentric gravitational constant through the
modified Kepler’s third law but also through the speed of light used to
convert time measurements to range measurements. Thus, the adopted
value of the geocentric gravitational constant should also be consistent
with the speed of light implicit in the range observations. In the
present study we have used the speed of light proposed by the MERIT
standards (i.e., ¢ = 299,792,458 m/s) (Lerch et al.,, 1985; Christodoulidis
et al., 1985).

The associated partial derivatives of equation (2-37) contributing to
the variational equations of state (i.e., to matrix Y(t), equation (2-28))

are given in (Cappellari et al.,, 1976, eq. 4-21; Pavlis 1982, eq. 13).

2.2.5.2 Gravitational acceleration due to nonsphericity of the

gravitational potential. The inertial acceleration induced on the satellite

by the nonsphericity of the earth is obtained via the gradient of the
perturbing potential. The perturbing potential is a scalar function
describing the nonspherical part of the geopotential in terms of an

infinite spherical harmonic series (Heiskanen and Moritz, 1967):

n n
E%] EO[C,,,,, cos(mA) + Spm sin(m)\)]an(sinM]

(2-42)

r

The zero-degree harmonic has been modeled in equation (2-37) and
therefore is not included in the above equation. The first-degree
harmonics are also not included because the origin of the PGS1680
implied (TRF) coincides with the the center of mass of the earth (see
Section 2.2.4). With the gradient of the perturbing potential the-
components of Lageos’ inertial acceleration, caused by the nonsphericity
of the earth, are expressed in the PGS1680 implied (TRF) frame.
Incorporation of this acceleration into the equations of motion (2-25)
requires transformation of its components from the (TRF) frame into the

corresponding (CRF) frame via the transformation equation (2-30)
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Rys = (SNP)T B (2-43)

where

= [3VN5 WVns  Vys
r =

ax °’ dy ° 3z (2-44)

is the gradient of the perturbing potential function Vyg (equation 2-42).
The expressions for the partial derivatives of the perturbing potential
function Vyg are given in (Cappellari et al.,, 1976). The radius (ag) of
the reference sphere, also needed in the evaluation of the perturbing
potential, is the same with the radius employed in the estimation of the
PGS1680 gravity field (i.e., ag = 6378144.11 m). For our study we have
truncated this field at degree and order 12 because perturbations
caused by higher harmonics over a two-week period contaminate the
computed SRD observables with errors having magnitude well below the
noise level of the SRD quasi-observables (see Section 4.6). Furthermore,
a nonvariant nature of the coefficients C,, and S,, has been adopted,
although it is well known that these two coefficients are largely affected
by the forced diurnal motion of the figure axis caused by the
nonrigidity of the earth (Moritz and Mueller, 1987).

The associated partial derivatives of equation (2-42) contributing to
the variational equations of state are given in (Cappellari et al.,, 1976,
eq. 4-54; Pavlis, 1982, eq. 21).

2.2.5.3 Lageos tidal inertial acceleration. According to the MERIT

standards, the tidally induced variations in the earth’s external potential
should be incorporated in the orbital model as wvariations in the
geopotential coefficients (Melbourne et al., 1983; Eanes et al., 1983). In
order to save computing time a two-step procedure is proposed to carry
out the implementation of these variations (ibid). In the first step the
variations of the geopotential coefficients are computed on the basis of a
nominal frequency independent Love number k,, while in the second
step these variations are corrected to account for the frequency

dependent nature of the nominal Love number k..
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The frequency dependent variations of the Love number k, have been
estimated for an elliptical, rotating, elastic fluid outer core and solid
inner core, oceanless earth (Wahr, 1981b). Although the proposed
two-step procedure i8 computationally more effective than any one-step
procedure, it is not appropriate for our investigation because one still
needs to evaluate many trigonometric functions at each of the observing
epochs (Melbourne et al.,, 1983). This however, not only would make the
orbital model more complicated but also it would make the SRD method
computationally less efficient. Therefore, it was decided to compute the
tidally induced space potential by assuming a solid earth (i.e., oceans
not included) which exhibits the same elastic response over all possible
orders within a certain degree (Diamante et al., 1972; Pavlis, 1982). With
such an earth model the tidally induced potential on the surface of the
earth takes the following form (Diamante et al., 1972; Goad, 1977; Pavlis,
1982):

[one}
-
"
lit~8

o = Lka Ur (ap) (2-45)
where k, is the nominal Love number of degree n and UTn(aE) is the nth
surface harmonic of the tidal potential. Solving the Dirichlet problem

the tidally induced space potential is obtained:
aE n+1
[—] ko Uy (ag) (2-46)
2 | | n

where |§| is the norm of the Lageos position vector expressed relative
to the center of mass of the earth. To the first order, terms with n > 2
in equation (2-46) can be neglected (Diamante et al., 1972), and therefore

this equation takes the following form

(ag) (2-47)

where
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Ry . R| _,

IRy | |R|

GM
U, (ag) = —>— - af [3 (2-48)

2[Ry’

The quantity k,; denotes the second-degree Love number while M,
denotes either the lunar or the solar mass, or for that matter the mass
of any planet that is considered to be a disturbing body. In this study
the Moon and the Sun have been considered as the only disturbing
bodies. The vectors R and ﬁb designate the geocentric position vectors
of the satellite and the disturbing body respectively. The components
of these vectors are expressed in the corresponding (CRF) frame. In
this frame the tidally induced acceleration on Lageos takes the following
form (Diamante et al., 1972; Pavlis, 1982):

= GM g
Rrop = 3 ks —2r - —= [(1- 5(F, - ©2)d + 28 - D]  (2-49)
27 IRel®  IRI
where
ﬁ -
Gy = —>— and @ = 2 (2-50)
IRy | Ir]

To account for a phase lag produced by the earth’s dissipative forces,

the vector I-%b in equation (2-50) has been replaced by another vector

ﬁﬁ. This vector is obtained from the vector ﬁb via the following
transformation
R¥ = Rs(-60)Ry (2-51)

where &6, (=0°35) is the phase lag. The R; rotation is performed about
the third axis of the corresponding CRF frame (see Section 2.2.4)., In
equations (2-47) and (2-49) the value 0.29 was adopted for the
second-degree Love number k,. This wvalue is different from that
proposed by the MERIT standards (k, = 0.30). This deviation, although
not of much importance, is justified since the tidal corrections applied
in the estimation of the PGS1680 gravity field were based on the altered

value of k, (i.e., k,; = 0.29). The permanent tidal deformation affecting
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the potential coefficient C,o, is inherently present in equation (2-49).
Consistent incorporation of this equation in the equations of motion
requires that the permanent tidal deformation is not included in the
PGS1680 C,;, value. This, however, seems to be the case for the
PGS1680 gravity field (Melbourne et al.,, 1983; Christodoulidis et al.,
1985). Furthermore, the ocean tidal perturbations are not included in the
orbital model of Lageos not only because they are small (i.e., one order
of magnitude smaller than the solid earth tidal effects (Section 4.6)) but
also because their evaluation would increase the bulk of the
computations considerably.

The contribution of the tidally induced acceleration to the
variational equations of state is given in (Pavlis, 1982, eq. 30). In that
equation the vector I-%b should be replaced by the vector ftﬁ from

equation (2-51).

2.2.5.4 Lageos solar radiation pressure acceleration. The
acceleration induced on Lageos due to photon momentum transfer is

referred to as solar radiation pressure acceleration, and it is given by
the following formula (El’Yasberg, 1967; Cappellari et al., 1976; Pavlis,
1982).

z s Au 2 A R - ﬁs
Rsn=7'5[m] ‘Cn'ﬁ'lﬁ—s_—ﬁ—! (2-52)
The eclipse factor y assumes the values zero, one, or any other value in
between depending on whether the satellite is in complete shadow
(umbra), in sunlight, or in partial shadow (penumbra) respectively. In
our study the eclipse factor y is determined by a simple cylindrical
model (Cappellari et al.,, 1976; Pavlis, 1982). This model is easy to
incorporate into the equations of motion, but it does not differentiate
between umbra and penumbra regions. A full model for the earth’s
shadow, as proposed by the MERIT standards, would increase the bulk

of computations thereby complicating the solution. It is rather doubtful
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that this complication would make any difference. The mean solar flux S
is the amount of photon energy flow through a unit surface per unit
time at a distance of one astronomical unit (AU) (i.e., AU = 1.4959787066
x 10'! meters) (Melbourne et al.,, 1983). The ratio (S/C) is the photon
momentum transfer to a unit surface per unit time at a distance of one
astronomical unit. The value (4.5605 x 10~ N/M2?) was used in our
study for the ratio (S/C) as proposed by the MERIT standards. The
position vectors R and P-ls in equation (2-52) designate the geocentric
position vectors of Lageos and the Sun respectively. The reflectivity
coefficient (Cgr) depends not only on the mechanism of light reflection
but also on the thermal emission distribution of the satellite surface.
The monthly values for the reflectivity coefficient (Cg) are shown in
Table 1 for the entire MERIT campaign. These values have been
estimated together with other parameters in the adjustment of the MERIT
laser range data performed by the GEODYN II programs (Pavlis, 1986,
private communication). In the present study we have used the
reflectivity coefficient values listed in Table 1 instead of using the
value proposed by the MERIT standards.

Table 1 Lageos Along-Track Acceleration and Its Reflectivity
Coefficients
Magnitude of Lageos Along—Track Lageos Reflectivity
Acceleration x 1072 p/s? Coefficients
Sep. 1983 -2.909 1.141
Oct. " -3.549 1.136
Nov. " -3.893 1.135
Dec. " -3.825 1.133
Jan. 1984 -4.343 1.136
Feb. " -4.319 1.134
Mar. " -4.065 1.109
Apr. " -3.550 1.057
May " -3.189 1.096
Jun. " -3.393 1.139
Jul. " -3.928 1.132
Aug. " -2.946 "1.126
Sep. " -2.301 1.126
Oct. " -2.524 1.126
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This deviation of the MERIT standards, although plausible, will not affect
the accuracy of the estimated baselines. The effective area (A) of the
surface normal to the incident light is given, for a spherical satellite
like Lageos, from (El’Yasberg, 1967)

A = nRg? (2-53)

where Rg is Lageos’ radius (i.e., Rg = 0.30 m) (Melbourne et al., 1983).
Finally, the Lageos mass (M) of 407 kg has been used in the evaluation
of equation (2-52).

The associated partial derivatives of the solar radiation pressure
acceleration contributing to the variational equations of state are given
in (Cappellari et al.,, 1976, eq. 4-161 and 4-162; Pavlis, 1982, eq. 25 and
26).

According to the MERIT standards the inertial acceleration induced
on the satellite due to the diffused reradiated light from the earth
(earth albedo) is not included in the orbital model of the Lageos

satellite.

2.2.5.5 Lageos along-track empirical acceleration. Ever since the

launch of the Lageos satellite it has been observed that its semimajor
axis decreases at a rate of 1 mm/day. This has been traced to an
unexpected and still physically unmodelled along-track acceleration
acting on the Lageos satellite. Attempts to explain the origin of this
mysterious acceleration have either totally or partially failed. These
attempts are based on a variety of possible causes ranging from
assuming helium concentrations at satellite altitudes (Rubincam, 1980) to
considering the solar eclipses (Rubincam et al., 1985). Although all of
these attempts have partially failed, it is quite clear that this
acceleration is the result of a combined effect caused by the
asymmetries of the earth’s albedo and by the charged particles traveling
in the vicinity of Lageos (Smith et al.,, 1985; Alfonso et al.,, 1985). Since
the physical process producing this acceleration is unknown, its

modeling has been accomplished with an empirical model. This model
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1982):

(2-54)

where o« is the magnitude of the along-track acceleration. The monthly
magnitudes of this acceleration are also listed in Table 1 for the entire
MERIT campaign. These values have been estimated with the GEODYN II
program (Pavlis, 1982, private communication).

Contributions to the variational equations of state due to this

acceleration are neglected because of their small magnitudes.

2.2.6 Normal Equations

The observation equations for the SRD quasi-observables are readily
obtained through a Taylor series expansion of equation (2-22). In this
expansion only the zero- and first-order terms are retained while all of
the remaining higher-order terms are neglected. The expansion is
performed about the approximate earth-fixed station coordinates and the

celestial initial state vector of the corresponding arc:

where
(A)ixaa = [ By i Cy ] ., (2-56)

abp;
(Bj)lxs = [_—J—

=z 2-57
a(Yl’Yz) 1x6v ( )
a0p ; 31-2.
; = | —=—4 —_— = (8 . i
(CJ)‘XG [ aRj ] a(RO’RO) ]3)(6 ( J)‘xa [YJ(t)]sxs
(2-58)
41



X, = (d¥, , d¥;, dR, , dRo)iyi2 (2-59)
Lj = the computed minus the generated SRD quasi-observable
v = residual corresponding to the jth SRD observable

The matrices (BJ)HG and (S;)ixs are readily obtained by differentiating
equation (2-22), while the state transition matrix [Yj(t)]sxa is obtained
in the numerical integration process of the variational equations of
state. The celestial satellite coordinates at the epoch j needed to
evaluate the vectors (BJ),xts and (Sj)lxa as well as the scalar L; are
obtained from the numerical integration of Lageos' equations of motion
(see Sections 2.2.3 through 2.2.5). The adjusted parameter vector ij
contains corrections to the earth-fixed approximate coordinates of
stations 1 and 2 (i.e., dY_'l and d\-fz) and to the corresponding celestial
initial state vector (i.e., dR, and d'ﬁo). Extension of equations
(2-55)-(2-59) to include all the available SRD observables and all the

observed satellite arcs leads to the following equations

V=A% +1 (2-60)
where
A¥ = [ Bx : ¢¥ ] (2-61)
a6p|
BY - [ﬁ (2-62)
“nx3k
26p] aR
o¥ = ﬁ ' [a(I_ I )] = (8)pxst - [Y*(t)]ggu—,m (2-863)
Inx3e Ro?’ Ro’d3lxem
i = d;{ ’ d[Iﬁo’IRO]] (2—64)
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vector containing the computed minus the SRD quasi-observables

<i)
"

residual vector

Vector 3p contains all the available SRD observables, vector Y the
Cartesian coordinates of all the observing stations, vector Z the
Cartesian coordinates of the observed satellite positions, and wvectors
I¥,, I, the initial state vectors of all the arcs involved. The adjusted
parameter vector )a( contains the corrections to the approximate
earth-fixed coordinates of the observing stations (i.e., d’?) together with
the corrections to the initial state vectors of the observed satellite arcs
(i.e., d(I'R'o, Iﬁo)). The integers £ and n denote the number of the
observed satellite positions and the number of observations, while the
integers k and m denote the number of the observing stations and the
number of the observed satellite arcs respectively.

A close examination of equations (2-62) and (2-63) reveals that the
submatrices (B¥,5,) and (Snxst) would be exactly the same even if the
satellite positions were treated as auxiliary independent points in space
(i.e., geometric approach). The constraints imposed on the observed
satellite positions to lie in the corresponding satellite arcs are applied
through the state transition matrix (Y*(t)u“m).

Singularity A (see Section 2.1.3) affects the dynamic and geometric
solutions in exactly the same way because the submatrix B¥ in equation
(2-61) is the same for both the geometric and the dynamic approach.
With SRD observables singularity A occurs not only from the resulting
geometry of one station and its observed targets (see Section 2.1.3) but
also from the geometry of two coobserving stations and their observed
targets. Singularity B or singularity C cannot exist in a dynamic
solution because the structure of the matrix (S,xs2) is altered by its
multiplication with the state transition matrix (Y¥(t), Lx6m)e The
alteration of the matrix (S,xs#) not only differentiates the dynamic from
the geometric approach but also furnishes the dynamic approach with
better stability characteristics (see Sections 4.2 and 4.4).

Taking into consideration that the state transition matrix is different

from epoch to epoch, one can readily prove that in the absence of
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gingularity A the design matrix A¥ (apart from the ill-defined origin of
longitudes) is nonsingular if the adjusted parameter vector consists only
of corrections to the approximate station coordinates and to the initial
state vectors. This is not surprising because the TRF frame, with an
ill-defined origin of longitudes, is implied by the PGS1680 gravity field
while the CRF frame is subsequently realized via the transformation
equation (2-30). Including polar motion and/or variations of UT1 in the
adjusted parameter vector results in an extremely ill-conditioned design
matrix A* because polar motion and station coordinate are nearly
inseparable, while variations in UT1l and in the satellite node are
inseparable parameters as well (Van Gelder, 1978; Pavlis, 1982).

In the present study, polar motion and the variations in UT1 are
not included in the adjusted parameter vector. Thus, after resolving
the problem of the ill-defined origin of longitudes (see Section 4.4) we
proceed with the formation and the solution of the normal equations.
Using the same arguments as in Section 2.1.2 and the observation
equations (2-60), the normal equations take the following form (Uotila,
1987)

(AXTPAX + Py)X + AXTPL = 0 (2-65)

where P and Py are the weight matrices associated with the SRD
observables and the adjusted parameter vector respectively. Since the
weight matrix P is diagonal the normals are formed sequentially through

the following formula

ATA .
S e R (2-66)

AXTPAX + Py =
j=1 Uj

where Aj (i.e., equation (2-56)) is the jth row of the design matrix A¥, n
is the total number of the SRD observables and a§ is the wvariance for
the jth SRD observable. These variances are computed via the following

formula
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g} = o}, + o3, G=1, . .., n) (2-67)

where d}l and 6}2 are the variances of the actually observed and the

interpolated ranges respectively. The inversion of the normal equation

matrix (2-66) was obtained with the Cholesky algorithm (Uotila, 1967).
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Chapter 3

GENERATION OF THE OBSERVABLES

This chapter starts with a description of the SLR system in an attempt
to identify and understand the systematic errors affecting the laser
ranges. It continues with a description of the data set employed in this
investigation and finally ends with the generation of the simultaneous
range and SRD observables. These two observables constitute the input

to the geometric and SRD methods respectively.

3.1 SATELLITE LASER RANGING
A satellite laser ranging system consists of three basic components:

(i) the ground segment,

(ii) the atmospheric channel, and

(iii) the spaceborne segment.

The ground segment consists of a global network of fixed and
highly mobile satellite laser ranging stations forming a network
configured to allow measurements of the plate tectonic motions (Coates et
al., 1985). Tectonic plate motions are essential in understanding the
geodynamic processes necessary for earthquake and volcano erruption
predictions. Each of the stations in the network is equipped with the
necessary hardware to produce, emit, receive and measure the round-
trip flight time of very short laser pulses to a retroreflector equipped
artificial satellite such as LAGEOS.

The atmospheric channel is the optical path followed by a laser
pulse in its round trip from the station to the satellite.

The spaceborne segment consists of approximately 14 retroreflector

equipped satellites (Degnan, 1985). For geodesy and geodynamics Lageos
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is an example of such a satellite in orbit high enough not to be
influenced by the difficult to model high frequency variations of the
gravity field and the atmospheric drag but yet at low enough altitude to
assure good signal returns to the tracking stations. Therefore, the
propagation of the orbital errors in the estimated geodetic parameters is
substantially reduced. This error reduction is very important because
variations in certain geodetic parameters such as baselines, polar motion,
and length of day are routinely used in understanding the mechanisms
driving geodynamic processes.

In the operational environment, depending on the technology
employed and the models used, each component of the satellite laser
ranging system will contribute in part to the total error affecting the
inferred geometric range. The next section contains, for each component
of the SLR system, a brief discussion of its operational principles, the
error sources, their status during the MERIT Main Campaign and the

future possibility of either reducing or eliminating them.

3.2 SATELLITE LASER RANGING SYSTEM, ITS COMPONENTS AND THEIR
CONTRIBUTION TO THE TOTAL ERROR BUDGET

3.2.1 Hardware of the Ground Segment

For each satellite ranging system, the hardware of the ground segment
consists of the laser transmitter, the laser receiver, their transmittimg
and receiving optics, the timing subsystem and the computer.

The laser transmitter in most of the modern laser systems consists
of a mode-locked Nd:YAG laser oscillator followed by one or more Nd:YAG
laser amplifiers. The name Nd:YAG is derived from the crystal used in
the light amplification by stimulated emission of radiation (i.e., lasing
process) which is a YAG crystal (Yttrium aluminum garnet : Y;Als0,)
"doped" with Neodymium (Johnson et al.,, 1978). Since the mode-locked
Nd:YAG lasers operate in a single spatial mode they are not affected by

"wavefront-distortion" errors (Degnan, 1985). The biases introduced by
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the mode-locked transmitters are of the order of subcentimeter level.
The crystals used in the lasing process, for the stations participating in
the MERIT Main Campaign, are reported in the SLR coordinator’s report
and its updates (Schutz, 1983b).

The laser receiver is designed to measure the round-trip flight time
of the laser pulse to a retroreflector equipped satellite. This time
interval is multiplied by the speed of light and divided by two to infer
the optical range from the station to the satellite. The basic elements of
a laser receiver are the photomultiplier, the discriminator and the time
interval unit.

The photomultiplier is a device used to detect the incoming laser
pulse. Its principle of operation is based on the photoelectric effect
(Halliday et al.,, 1962; Drain, 1980). Most of the SLR systems
participating in the MERIT Main Campaign made use of the conventional
type photomultipliers referred to as dynode-chain photomultipliers
(Degnan, 1985). The time it takes for the photoelectrons to propagate
from the photocathode to the anode via the dynodes is called transit
time. If the transit time were constant it could be completely accounted
for through either calibration or common channel procedures (ibid).
Variations in the transit time, referred to as transit time jitter,
influence the inferred ranges by as much as 15 cm (ibid). This error is
mainly caused by the motion of the satellite image within the
photocathode when the instrument tracks the satellite. However,
successful focusing of the satellite image onto the photocathode reduces
this error to the 1 cm level. Other factors such as the impulse
response of the PMT’s, the amplitude of the input signals and the
background radiation also contribute to this error. These problems are
currently being solved with the replacement of the conventional PMT’s
with the so-called microchannel plate photomultiplier tubes (MCP/PMT)
recently introduced on the market. These photomultipliers are
characterized by well-defined photoelectron path lengths with much
shorter transit times, and greatly reduced sensitivity in the image
position effects, the strength of the input signal and the background
radiation. When using the MCP/PMT photomultipliers, the resulting
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errors in the inferred range appear to be below the 5 mm level (ibid).

The purpose of a discriminator is to define on the photomultiplier’s
output waveform a timing point and subsequently to generate a
rectangular logic pulse that starts or stops the time interval unit. The
output waveform has a quasi-Gaussian form with a randomly varying
amplitude. This amplitude variation introduces, in the determination of
the timing point, a time bias which is highly repeatable and can be
estimated if the amplitude of the input pulse is measured and recorded
along with each observation. In practice the amplitude-dependent time
bias is determined experimentally and is compensated for by
incorporating a hardwired circuitry into the discriminator. The degree
of success in implementing this circuitry is determined experimentally
and is shown in the time walk characteristic of the discriminator. The
time walk characteristic is a curve obtained by plotting the signal
amplitude dependent time biases versus the input signal amplitudes.
The time walk characteristic shows the time bias introduced by
amplitude variations, while its RMS deviation from the zero horizontal
line characterizes the efficiency of the discriminator (ibid). For the
discrimators used during the MERIT Main Campaign, this RMS deviation
reached the value of 1.5 cm, while for discrimators currently appearing
on the market this value has been reduced to the 0.2 cm level. The
latter discriminators are currently being tested for implementation in the
continuously upgraded SLR systems.

The purpose of the Time Interval Unit (TIU) is to measure the
round-trip flight time of the laser pulse. The rectangular logic pulse
generated by the start discriminator activates the time interval counter
while the corresponding logic pulse from the stop discriminator
commands the counter to stop. The basic component of the TIU is an
oscillator which determines the stability and accuracy of the TIU. The
oscillators used by the SLR stations which participated in the MERIT
Main Campaign were either cesium beam type or rubidium type (Schutz,
1983b). To achieve maximum accuracy, the measurement of the round-trip
flight time is split up in three parts (i.e., T = T1 + T12 - T2), where T1

is the time elapsed from the starting epoch to the first following
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positive crossover of the oscillator, T2 is the time elapsed from the
ending epoch to the next following positive crossover, and T12 is the
time interval between the aforementioned positive crossovers. T12 is
obtained by multiplying the number of intervening positive crossovers
(N12) by the period (T0) of the master oscillator (i.e., T12 = N12 x TO).
The fractional times T1 and T2 are accurately measured either by
charging and discharging a capacitor with constant but different
currents or by using a second oscillator which is slightly off from the
master oscillator. Common biases introduced in measuring T1 and T2 are
canceled out because the times T1 and T2 are subtracted in the
computation of the round trip flight time (i.e., T). Residual errors at
the cm level are still present. These errors can be reduced at the mm
level with the use of streak-cameras employed in the Optical Time
Interval Unit (OTIU) currently being investigated for implementation in
the new two-color laser receivers (Abshire et al, 1985).

The transmitting optics are used to align the laser pulse towards
the satellite being tracked, while the receiving optics are used to
receive and focus the reflected laser pulse onto the cathode of the
photomultiplier. Unsuccessful focusing introduces the image position
effects previously mentioned. A substantially reduced single
dual-purpose telescope performs both of the above functions, thanks to
the technological advances in the field of signal detectors,
photomultipliers and discriminators. These advances introduced a
substantial reduction in the station design which in turn triggered the
construction of the highly transportable laser ranging systems TLRS-1
(Silverberg, 1982; Shelus, 1983), TLRS-2 (Transportable Laser Ranging
System No., 2), etc. These systems are extremely valuable in the study
of geophysical processes because of their ability to make observations of
limited time in remote areas, in a hostile environment.

The time receiver is either a LORAN-C or a GPS receiver and is
used to time-tag each observation in the Universal Coordinated Time
(UTC) scale. The synchronization accuracy with a LORAN-C receiver is
of the order of 1 us, while with a GPS receiver this accuracy is of the

order of 50 ns. Synchronization errors affect the inferred optical range
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by about 4 mm/us. The laser stations used in this study belong either
to the Goddard Laser Tracking Network (GLTN) or to the Participating
Laser Network (PLN) (Shawe et al., 1985), and their observations are
time-tagged with the UTC scale kept by USNO. According to the MERIT
standards and for reasons explained in Chapter 2, the UTC(USNO) has
been transformed to UTC(BIH).

The computer is used as an auxiliary equipment to control satellite
tracking operations, to assist the operator with such functions as data

quality and quantity assessment, maintenance, testing procedures, etc.

3.2.2 Atmospheric Channel

As the laser pulse propagates through the atmospheric channel it
experiences a continuously varying refractive index. This wvariation
depends primarily on the variations of the local pressure with only a
weak dependence on the local temperature and local humidity (Degnan,
1985; .Abshire, 1985). A varying refractive index, on the other hand,
bends the laser pulse according to Snell’s law and also decreases the
group velocity of the laser pulse as it travels through lower pressure
layers at higher altitudes. The error due to bending of the laser pulse
is relatively small and reaches a maximum value of 3-4 cm at 10 degrees
elevation while the error due to the decrease of the group velocity is
very large, reaching the wvalue of about 13 m at the same elevation
(Abshire, 1985). A great number of formulas have been developed to
correct the inferred optical length of the laser pulses (i.e., the inferred
laser ranges) for atmospheric refraction effects. In the present study
and according to the MERIT standards, the Marini and Murray formula
has been used to correct for these effects (Marini and Murray, 1973).
This formula is based on the assumption of a spherically symmetric
atmospheric refraction and it uses only the pressure, temperature and
relative humidity taken at the ranging site. This formula is in error at
the 4-6 cm level as the satellite reaches an elevation angle of 20
degrees (ibid). Today, use of two-color laser ranging systems equipped
with streak-camera receivers promises an atmospheric refraction

correction with an accuracy down to the mm level, thanks to the weak

51



dependency of the group refractivity on the water wvapor at optical
wavelengths (Abshire, 1985).

3.2.3 Space Segment

Although the space segment of the SLR system consists of several
satellites, the LAser GEOdynamics Satellite (LAGEOS) is devoted
exclusively to geodynamic and geodetic applications (Moritz and Mueller,
1987). Lageos is a passive sphere with a 59.988 cm diameter orbiting
the earth at an altitude of about 5900 km. Its mass-to-area ratio of
1.44x103% kg/m? effectively minimizes the solar radiation pressure and
atmospheric drag perturbations. The high altitude of Lageos’ orbit not
only reduces the effects of the poorly modeled high frequency
variations of the gravity field but also warranties good simultaneous
tracking of continental extent. The altitude of the orbit, however, is
low enough to assure the geometric strength necessary for successful
implementation of simultaneous laser satellite tracking methods.
Consequently, only laser range observations to Lageos were facilitated in
order to investigate the effectiveness of the SRD and geometric methods
in baseline determinations.

The surface of the Lageos satellite is speckled with 422
solid-cube-corner reflectors (CCR’s) made of fused silica and four made
of germanium (Cohen et al.,, 1985). When the direction of the incoming
laser beam relative to the normal of each individual CCR reaches the
value of 25 degrees, reflection ceases to take place (Degnan, 1985). As
a result, 10 to 15 CCR’s contribute to the laser pulse detected at the
receiver. Therefore, it is difficult to locate for each returning pulse its
reflection point which constitutes the ending point of the inferred
optical laser range. The location of the reflection point is needed to
compute the correction necessary to transform the ending point of the
optical laser range to the center of mass of the satellite. This
correction is referred to as center of mass correction, and its value has
been determined experimentally for different pulse widths prior to the
Lageos launch. The standard deviation in estimating this correction is

about 2 mm. In the current investigation the wvalue of 24 cm has been
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adopted for the center of mass correction. This value is supplied on
each data record in the tape containing the observations (see Section
3.4). Furthermore, the interference of the individual CCR returns, at
the receiver’s level, may introduce a random error in the inferred laser
range the standard deviation of which reaches the value of 1.15 cm
(Fitzmaurice et al.,, 1977). This error is referred to as the coherent

fading effect.

3.2.4 Instrument Origin

Effective use of laser range observations necessitates a clear
identification of the starting and ending points of the inferred ranges.
As already mentioned, the ending point is identified with the center of
mass of the satellite. This is a natural choice because the equations of
motion of the satellite are conveniently expressed relative to this point.

The starting point is identified with a fixed reference point within the
laser instrument and is referred to as instrument origin. The
instrument origin usually coincides with the intersection of the
telescope’s azimuth and elevation axes, but other points within the laser
instrument may be used as well. Realization of the instrument origin is
achieved either through calibration or through the common channel
receiver approach (Abshire et al.,, 1984; Degnan, 1985). During the
MERIT Main Campaign, calibration procedures were employed to identify
the instrument origin through the estimation of the system delay
(Schutz, 1983a). The system delay is measured by making repeated
observations to a calibration target of known distance, usually before
and after each satellite pass. With this information, the system delay
introduced by the instrument’s electronics can . be readily estimated.
The distance to the calibration target is measured with a geodimeter
located very close to the laser ranging instrument. Additional surveys,
therefore, are necessary to determine the position of the geodimeter
relative to the instrument’s origin. In this process, errors of the
order of 2 cm may be introduced. In order to reduce these errors,
some laser instruments are equipped with fiberoptics allowing for

self-calibration (Silverberg, 1982). The common channel-receiver
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approach, on the other hand, eliminates the need for calibration since
the electronic system delay, except for a calibratable signal-amplitude
effect, cancels itself out (Abshire et al.,, 1984; Degnan, 1985). This
approach is currently being tested for implementation in the laser
ranging systems.

From the above discussion it is obvious that on the basis of the
technology employed and the models used, one could come up with a
standard deviation depicting the accuracy of the lagser range
observations recorded by a certain station. This approach, however,
would not take into consideration errors resulting from improper
calibration, from operator errors or from any other errors not being
accounted for. Bearing this in mind, it was considered appropriate to
estimate, for every station used in the present study, a standard
deviation that would reflect the station’s overall performance during the
MERIT Main Campaign. Such an estimate can be obtained by taking an
average value of the monthly precision estimates determined for every
station and for the entire MERIT Main Campaign by the University of
Texas (Analysis of Lageos Laser Range Data, Sept. 1983-Oct. 1984). For
the stations involved in our study, these estimates are shown in Table 2
along with the station ID’s and the kind of laser instruments with which

they were equipped during the MERIT Main Campaign.
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Table 2. Station Location, Laser Instruments
and Precision Estimates.

LASER OBSERVATIONAL
NAME| ID LOCATION INSTRUMENT |PRECISION (m)
QUINCZ| 7109 | Quincy, CA MOBLAS-8 0.028
MNPEAK| 7110 | Mount Laguna, CA MOBLAS-4 0.033
MAZTLN| 7122 | Mazatlan, Mexico MOBLAS-6 0.12/0.05%
GRF105]| 7105 | Greenbelt, MD MOBLAS-7 0.034
PLATVL{ 7112 | Platteville, CO MOBLAS-2 0.125
MCDON | 7086 | McDonald Obs., Ft. Davis, TX | MLRS 0.084
TL0O126| 7265 | Barstow, CA TLRS~1 0.080
OTAY 7062 | Otay Mt., San Diego, CA TLRS-2 0.060
QUINC3| 7886 | Quincy, CA TLRS-1 0.070
MONPK2| 7220 | Mt. Laguna, CA TLRS-1 0.060
HOLLAS{ 7210 | Lure Obs., Maui, HI HOLLAS 0.042
HUAHIN| 7121 | Huahine, Society Is., Pol. MOBLAS-1 0.094
ARELAS| 7907 | Arequipa, Peru AREfixed 0.145

*before and after upgrading.

3.3 SYSTEMATIC CORRECTIONS OF THE OBSERVATIONS EXTERNAL TO
THE SLR SYSTEM
Effective application of the least-squares adjustment assumes constant
adjusted parameters over at least the time span of the observations.
Thus, baseline estimation from station coordinates requires corrected
station coordinates for their temporal variations. Besides shocks and
regional deformations, the temporal variations of station coordinates are
caused either by tectonic plate motions or by earth tides. The regional
deformations are ignored because either they are unknown or their
effects are very small. For instance, the ocean loading effects for the
stations used in this investigation are very small (Melbourne et al.,
1983). Since the time span of the observations covers about one year,
the plate tectonic motions have also been ignored. Thus we have
considered only the temporal variations of station coordinates caused by
the earth tides. The tidal corrections are accounted for by correcting
either the observations or the station coordinates. In the present study

the traditional way of correcting the station coordinates has been
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adopted. This correction has been conveniently formulated through the
station displacement vector caused by the tidal deformation (ibid.). This
formulation is based on the same elastic response of a solid earth over
all orders within a certain degree, and if only the second degree is

considered it takes the following form:

4

3 GM;r h h
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AP = jgz aﬁi§§?l[[322(RJ ?)]Rj + [ 3[2 l,](Rf ) 5 ]?] (3-1)
where
RY = Ra(-6,) - Ry (3-2)
8, = phase lag caused by the earth’s dissipative forces
GM; = gravitational parameter of the attracting body. In the
present study only the mocon (j = 2) and the sun (j = 3)
have been considered
GMg = geocentric gravitational constant

ﬁj,Rj = unit vector and the magnitude of the geocentric vector

of the moon (j = 2) and the sun (j = 3) respectively

f2,r = unit vector and the magnitude of the stations’ geocentric
vector

h, = nominal second-degree Love number

2, = nominal second-degree Shida number

ﬁ’}‘,R’_‘]‘ = unit vector and the magnitude for the geocentric vector of
of the moon (j = 2) and the sun (j = 3) in the absence

of dissipative forces

The way the tidal displacements have been incorporated in our study
differs in two aspects from what was suggested by the MERIT
standards. The phase lag caused by the dissipative forces has been
modelled in equation (3-2), while the second-degree Love and Shida
numbers have been assumed to be frequency independent. The latter
assumption results in a maximum error of 1.3 cm in the stations’ height
(ibid.). This assumption is well justified not only because the resulting

error is well below the noise level of the observations but also because
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it reduces the bulk of the computations considerably.

3.4 DESCRIPTION OF THE DATA SET UTILIZED IN THIS INVESTIGATION
Both the SRD and the geometric methods require strict simultaneity.
Although baseline estimations based on exclusively simultaneous
observations are largely insensitive to the orbital errors (Christodoulidis
et al.,, 1981) and to reference frame model errors (Pavlis and Mueller,
1983), no specific campaign was ever devoted to coordinate simultaneous
tracking. This, together with the inability of the SLR systems to track
a satellite through a cloudy atmosphere, makes it even more difficult to
achieve extensive simultaneous laser tracking.

Fortunately enough, as early as 1978 the IAU Symposium No. 82 on
"Time and the Earth’s Rotation" recommended setting up a working
group to organize a program of international collaboration to Monitor the
Earth’s Rotation and Intercompare the Techniques of observation and
analysis (MER